Гидравлика. Конспект лекций



         

Центр давления


Распределённую нагрузку, действующую на  наклонную стенку, заменим сконцентрированной. Для этого найдём на наклонной стенке положение точки D, в которой приложена равнодействующая силы давления. Точку, в которой приложена эта сила, называют центром давления. Как уже неоднократно рассматривалось, давление, действующее в любой точке, в соответствии с основным уравнением гидростатики складывается из двух частей: внешнего давления P0, передающегося всем точкам жидкости одинаково, и давления столба жидкости P, определяемого глубиной погружения этой точки.

Давление P0 передаётся всем точкам площадки одинаково. Следовательно, равнодействующая Fвн этого давления будет приложена в центре тяжести площадки S. При этом надо учитывать, что в большинстве случаев это давление действует и со стороны жидкости и с наружной стороны стенки.

Давление P увеличивается с увеличением глубины. При этом величина равнодействующей этой силы Fизб известна и равна

,

а точку её приложения необходимо определить.

Для нахождения центра избыточного давления жидкости применим уравнение механики, согласно которому момент равнодействующей силы относительно оси 0X равен сумме моментов составляющих сил, т.е.

где YD  - координата точки приложения силы Fизб,

         Y – текущая глубина.

Учтём, что, если hc  выразить как координату точки C по оси Y, то Fизб примет вид:

Заменив в этом выражении Fизб и YD интегралом, в соответствии с упомянутым уравнением механики, будем иметь:

Отсюда выразим YD:

Интеграл в числителе дроби является статическим моментом инерции площади S относительно оси 0X  и обычно обозначается Jx

.

Из теоретической механики известно, что статический момент площади относительно оси вращения равен сумме собственного момента инерции (момента инерции этой площади относительно оси проходящей через её центр тяжести и параллельной первой оси) и произведению этой площади на квадрат расстояния от оси вращения до центра её тяжести

.

С учётом последнего определения YD окончательно можно выразить в виде:




Содержание  Назад  Вперед